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ABSTRACT 

The Fisher information matrix summarizes the amount of 
information in the data relative to the quantities of interest. There are 
many applications of the information matrix in modeling, systems 
analysis, and estimation, including confidence region calculation, 
input design, prediction bounds, and “noninformative” priors for 
Bayesian analysis. This paper reviews some basic principles 
associated with the information matrix, presents a resampling-based 
method for computing the information matrix together with some 
new theory related to efficient implementation, and presents some 
numerical results. The resampling-based method relies on an 
efficient technique for estimating the Hessian matrix, introduced as 
part of the adaptive (“second-order”) form of the simultaneous 
perturbation stochastic approximation (SPSA) optimization 
algorithm.  
 

KEY WORDS: Monte Carlo simulation; Cramér-Rao bound; 
simultaneous perturbation; antithetic random numbers. 

1. INTRODUCTION 

The Fisher information matrix plays a central role in the 
practice and theory of identification and estimation. This 
matrix provides a summary of the amount of information in 
the data relative to the quantities of interest. Some of the 
specific applications of the information matrix include 
confidence region calculation for parameter estimates, the 
determination of inputs in experimental design, providing a 
bound on the best possible performance in an adaptive system 
based on unbiased parameter estimates (such as a control 
system), producing uncertainty bounds on predictions (such as 
with a neural network), and determining noninformative prior 
distributions (Jeffreys’ prior) for Bayesian analysis. 
Unfortunately, the analytical calculation of the information 
matrix is often difficult or impossible. This is especially the  

 

case with nonlinear models such as neural networks. This 
paper describes a Monte Carlo resampling-based method for 
computing the information matrix. This method applies in 
problems of arbitrary difficulty and is relatively easy to 
implement.  
 Section 2 provides some formal background on the 
information matrix and summarizes two key properties that 
closely connect the information matrix to the covariance 
matrix of general parameter estimates. This connection 
provides the prime rationale for applications of the 
information matrix in the areas of uncertainty regions for 
parameter estimation, experimental design, and predictive 
inference. Section 3 describes the Monte Carlo resampling-
based approach. Section 4 presents some theory in support of 
the method, including a result that provides the basis for an 
optimal implementation of the Monte Carlo method. Section 5 
discusses an implementation based on antithetic random 
numbers, which can sometimes result in variance reduction. 
Section 6 describes some numerical results and Section 7 
gives some concluding remarks. 

2. FISHER INFORMATION MATRIX: 
DEFINITION AND KEY PROPERTIES 

Consider a collection of n random vectors Z
(n)

 ≡ [z1, z2, …, 

zn]
T
. Let us assume that the general form for the joint 

probability density or probability mass (or hybrid 

density/mass) function for the random data matrix Z
(n)

 is 
known, but that this function depends on an unknown vector 

θ. Let the probability density/mass function for Z
(n)

 be 

pZ(ζ|θ)  



where ζ (“zeta”) is a dummy matrix representing the possible 

outcomes for the elements in Z
(n)

 (in pZ(ζ|θ), the index n on 

Z
(n)

 is being suppressed for notational convenience). The 

corresponding likelihood function, say l(θ|ζ), satisfies  

 l(θ|ζ) = pZ(ζ|θ). (2.1) 

With the definition of the likelihood function in (2.1), we are 
now in a position to present the Fisher information matrix. 

The expectations below are with respect to the data set Z
(n)

.  

 The p × p information matrix Fn(θ) for a differentiable 
log-likelihood function is given by    

 
log log

( )n T
E

 ∂ ∂
θ ≡ ⋅ θ ∂θ ∂θ 

F . (2.2) 

In the case where the underlying data {z1, z2, …, zn} are 
independent (and even in many cases where the data may be 

dependent), the magnitude of Fn(θ) will grow at a rate 

proportional to n since log l  will represent a sum of n random 

terms. The bounded quantity ( ) nθF  is employed as an 

average information matrix over all measurements. Note also 

that when the data depend on some inputs xi , then Fn(θ) also 

depends on these inputs, i.e., Fn(θ) = Fn(θ | x1, x2,…, xn). For 
notational convenience—and since many applications depend 
on cases (such as i.i.d. data) where there are no varying 

inputs—we suppress this dependence and write Fn(θ) for the 
information matrix. In optimal input design, however, this 

dependence on the xi is critical (e.g., Atkinson and Donev, 
1992, Chap. 10; Ljung, 1999, Chap. 13; Spall, 2003, Chap. 17). 
 Except for relatively simple problems, however, the form 
in (2.2) is generally not useful in the practical calculation of 
the information matrix. Computing the expectation of a 
product of multivariate nonlinear functions is usually a 
hopeless task. A well-known equivalent form follows by 

assuming that log l is twice differentiable in θ. That is, the 

Hessian matrix 

 ( ) ( )2log
T

∂
≡

∂ ∂

θ ζ
θ ζ

θ θ
H  

is assumed to exist. Further, assume that the likelihood 
function is “regular” in the sense that standard conditions such 
as in Wilks (1962, pp. 408−411; pp. 418−419) or Bickel and 
Doksum (1977, pp. 126−127) hold. One of these conditions is 

that the set {ζ: l(θ|ζ) > 0} does not depend on θ. A 

fundamental implication of the regularity for the likelihood is 
that the necessary interchanges of differentiation and  
 

integration are valid. Then, the information matrix is related to 

the Hessian matrix of log l through: 

 ( )( ) |( )n
n E  θ = − θ θ F H Z . (2.3) 

The form in (2.3) is usually more amenable to calculation than 
the product-based form in (2.2). 
  Note that in some applications, the observed information 

matrix at a particular data set Z
(n)

 (i.e., −H(θ|Z
(n)

)) may be 
easier to compute and/or preferred from an inference point of 

view relative to the actual information matrix Fn(θ) in (2.3) 
(e.g., Efron and Hinckley, 1978). Although the method in this 

paper is described for the determination of Fn(θ), the efficient 
Hessian estimation described in Section 3 may also be used 

directly for the determination of H(θ|Z
(n)

) when it is not easy 
to calculate the Hessian directly.  
 The above discussion focused on the definition of the 
information matrix and the equivalence of two representations 
for the matrix (the gradient-product form and the Hessian-
based form). We now review two of the most important 

analytical properties of the matrix. Let ∗θ  denote the 

unknown “true” value of θ. The primary rationale for Fn(θ) as 

a measure of information about θ within the data Z
(n)

 comes 
from its connection to the covariance matrix for the estimate 

of θ constructed from Z
(n)

. The first of the key properties 
makes this connection via an asymptotic normality result. In 

particular, for some common forms of estimates ˆ
nθ  (e.g., 

maximum likelihood and Bayesian maximum a posteriori), it 
is known that, under modest conditions,   

dist 1ˆ( ) ,( )nn N −
∗

∗θ − θ → 0 F   (2.4) 

where dist→  denotes convergence in distribution and 

 

( )
lim
n

n
n∗

→∞

∗
≡

F
F

θ

 

provided that the indicated limit exists and is invertible (e.g., 
Hoadley, 1971; Rao, 1973, pp. 415−417). Hence, in practice, 

for n reasonably large, 1( )n
−θF  can serve as an approximate 

covariance matrix of the estimate ˆ
nθ  when θ is chosen close 

to the unknown ∗θ   (since ˆ
nθ  is convergent to ∗θ  in some 

stochastic sense under the conditions in which (2.4) holds, θ is 

usually chosen to be ˆ
nθ  for the evaluation of Fn(θ)).  

 Relationship (2.4) also holds for optimal implementations 

of some recursive algorithms where the data zi are processed 
recursively instead of in a batch mode as is typical in  
 



maximum likelihood. This includes optimal versions of 
gradient-based stochastic approximation algorithms (e.g., 
Kushner and Yang, 1995; Kushner and Yin, 1997, pp. 
332−333; or Spall, 2003, pp. 356−357), which includes 
popular algorithms such as least mean-squares (LMS) and 
neural network backpropagation as special cases.  
 The second key property of the information matrix 

applies in finite samples. If ˆ
nθ  is any unbiased estimator for θ 

(not just one for which (2.4) holds),  

 ˆcov( )nθ  ≥ 1( )n
−∗θF  ∀ n (2.5) 

(i.e., ˆcov( )nθ  − 1( )n
−∗θF  is positive semidefinite). There is 

also an expression analogous to (2.5) for biased estimators, 
but it is not especially useful in practice because it requires 
knowledge of the gradient of the bias with respect to θ (Rao, 
1973, pp. 323−327; Bickel and Doksum, 1977, pp. 127−128). 
Expression (2.5) is generally referred to as the Cramér-Rao 
inequality.  
 Expressions (2.4) and (2.5), taken together, point to the 
close connection between the inverse Fisher information 
matrix and the covariance matrix of the estimator. A larger 

Fn(θ) (in the matrix sense) is associated with a smaller 
covariance matrix (i.e., more information) while a smaller 

Fn(θ) is associated with a larger covariance matrix (i.e., less 
information). While (2.4) is an asymptotic result, (2.5) applies 
for all sample sizes subject to the unbiasedness requirement.  

3. RESAMPLING-BASED CALCULATION OF 
THE INFORMATION MATRIX 

 The calculation of Fn(θ) is often difficult or impossible in 
practical problems. Obtaining the required first or second 
derivatives of the log-likelihood function may be a formidable 
task in some applications, and computing the required 
expectation of the generally nonlinear multivariate function is 
often impossible in problems of practical interest. For 
example, in the context of dynamic models, Šimandl et al. 
(2001) illustrate the difficulty in nonlinear state estimation 
problems and Levy (1995) shows how the information matrix 
may be very complex in even relatively benign parameter 
estimation problems (i.e., for the estimation of parameters in a 
linear state-space model, the information matrix contains 35 
distinct sub-blocks and fills up a full page). 
To address this difficulty, the subsection outlines a computer 

resampling approach to estimating Fn(θ). This approach is 

useful when analytical methods for computing Fn(θ) are 
infeasible. The approach makes use of an efficient method for 
Hessian estimation. 
 The basis for the technique below is to use computational 
horsepower in lieu of traditional detailed theoretical analysis 

to determine Fn(θ). Two other notable Monte Carlo 
techniques are the bootstrap method for determining statistical 

distributions of estimates (e.g., Efron and Tibshirani, 1986; 
Lunneborg, 2000) and the Markov chain Monte Carlo method 
for producing pseudorandom numbers and related quantities 
(e.g., Gelfand and Smith, 1990). Part of the appeal of the 

Monte Carlo method here for estimating Fn(θ) is that it can be 
implemented with only evaluations of the log-likelihood 
(typically much easier to obtain than the customary gradient 
or second derivative information). Alternatively, if the 
gradient of the log-likelihood is available, that information 
can be used to enhance performance.   
  The essence of the method is to produce a large number 
of efficient “almost unbiased” estimates of the Hessian matrix 

of log l(⋅) and then average the negative of these estimates to 

obtain an approximation to Fn(θ). This approach is directly 

motivated by the definition of Fn(θ) as the mean value of the 
negative Hessian matrix (eqn. (2.3)). To produce these 
estimates, we generate pseudodata vectors in a Monte Carlo 
manner analogous to the bootstrap method mentioned above. 
The pseudodata are generated according to a bootstrap 
resampling scheme treating the chosen θ as “truth.”  The 
pseudodata are generated according to the probability model 

(2.1). So, for example, if it is assumed that the real data Zn = 

1 2, ,...,[ ]T T T T
nz z z  are jointly normally distributed, 

N(µ(θ), Σ(θ)), then the pseudodata are generated by Monte 
Carlo according to a normal distribution based on a mean µ 
and covariance matrix Σ evaluated at the chosen θ. Let the ith 

pseudodata vector be Zpseudo(i); the use of Zpseudo without 
the argument is a generic reference to a pseudodata vector. 
This data vector represents a sample of size n (analogous to 

the real data Zn) from the assumed distribution for the set of 
data based on the unknown parameters taking on the chosen 
value of θ.  
 Given the aim to avoid the complex calculations usually 
needed to obtain second derivative information, the critical 
part of this conceptually simple scheme is the efficient 
Hessian estimation. Spall (2000) introduced an efficient 
scheme for estimating Hessian matrices in the context of 
optimization. While there is no optimization here per se, we 
use the same formula for Hessian estimation. This formula is 
based on the simultaneous perturbation principle (Spall, 
1992).  
 The approach below can work with either 

log l (θ | Zpseudo) values (alone) or with the gradient 

g(θ | Zpseudo) ≡ pseudolog ( )|∂ ∂θ θZl  if that is available. The 

former usually corresponds to cases where the likelihood 
function and associated nonlinear process are so complex that 
no gradients are available. To highlight the fundamental 

commonality of approach, let G(θ|Zpseudo) represent either a 

gradient approximation (based on log l (θ | Zpseudo) values) or 



the exact gradient g(θ | Zpseudo). Because of its efficiency, the 
simultaneous perturbation gradient approximation is 

recommended in the case where only log l (θ | Zpseudo) values 

are available (see Spall, 2000).  

 We now present the Hessian estimate. Let ˆ
kH  denote the 

kth estimate of the Hessian ( )⋅H  in the Monte Carlo scheme. 

The formula for estimating the Hessian is: 

1 1 1 1
1 1

ˆ 1 , , , ,2 2 2

T
k k

k k kp k kp
− − − − δ δ     = ∆ ∆ + ∆ ∆        
… …

G G
H , (3.1) 

where kδG  ≡ pseudo( | )k+θ ∆G Z  − pseudo( | )k−θ ∆G Z  and 

the perturbation vector ∆k ≡ [∆k1, ∆k2,…, ∆kp]
T
 is a mean-

zero random vector such that the {∆kj} are “small” 
symmetrically distributed random variables that are uniformly 
bounded and satisfy ( )1| |kjE ∆  < ∞ uniformly in k, j. This 

latter condition excludes such commonly used Monte Carlo 

distributions as uniform and Gaussian. Assume that |∆kj| ≤ c 

for some small c > 0. In most implementations, the {∆kj} are 
i.i.d. across k and j. In implementations involving antithetic 

random numbers (see Section 5), ∆k and ∆k+1 may be 

dependent random vectors for some k, but at each k the {∆kj} 
are i.i.d. (across j). Note that the user has full control over the 

choice of the ∆kj distribution. A valid (and simple) choice is 
the Bernoulli ± c distribution (it is not known at this time if 
this is the “best” distribution to choose for this application).  

 The prime rationale for (3.1) is that ˆ
kH  is a nearly 

unbiased estimator of the unknown H. Spall (2000) gives 

conditions such that the Hessian estimate has an O(c
2
) bias 

(the main such condition is smoothness of log l (θ | Zpseudo(i)), 

as reflected in the assumption that g(θ | Zpseudo(i)) is thrice 
continuously differentiable in θ).  

 The symmetrizing operation in (3.1) (the multiple 1/2 and 
the indicated sum) is convenient to maintain a symmetric 
Hessian estimate. To illustrate how the individual Hessian 

estimates may be quite poor, note that ˆ
kH  in (3.1) has (at 

most) rank two (and may not even be positive semidefinite). 
This low quality, however, does not prevent the information 
matrix estimate of interest from being accurate since it is not 
the Hessian per se that is of interest. The averaging process 
eliminates the inadequacies of the individual Hessian 
estimates.   
 The main source of efficiency for (3.1) is the fact that the 
estimate requires only a small (fixed) number of gradient or 
log-likelihood values for any dimension p. When gradient 
estimates are available, only two evaluations are needed. 
When only log-likelihood values are available, each of the 

gradient approximations pseudo( | )k+θ ∆G Z  and 

pseudo( | )k−θ ∆G Z  require two evaluations of 

log l (· | Zpseudo). Hence, one approximation ˆ
kH  uses four log-

likelihood values. The gradient approximation at the two 
design levels is:  

pseudo
pseudo

1
1

1
2

pseudo

1

log

2

.

.log )

.2

( | )
( | )

( |

k k
k

k

k

k k

kp

−

−

−

 ± +± = 
   ∆

 
 ∆
 
 
 ± +   − 
   ∆  

Z
G Z

Z

θ ∆ ∆
θ ∆

θ ∆ ∆

, (3.2) 

with [ ]1 2, ,....,
T

k k k kp= ∆ ∆ ∆∆  generated in the same statistical 

manner as ∆k , but independently of ∆k (in particular, choosing 

ki∆  as independent Bernoulli ± c random variables is a 

valid—but not necessary—choice). 
 Given the form for the Hessian estimate in (3.1), it is now 

relatively straightforward to estimate Fn(θ). Averaging 

Hessian estimates across many Zpseudo(i) yields an estimate of  

 pseudo ( )( | )[ ]E iθH Z  = −Fn(θ) 

to within an O(c
2
) bias (the expectation in the left-hand side 

above is with respect to the pseudodata). The resulting 
estimate can be made as accurate as desired through reducing 

c and increasing the number of ˆ
kH  values being averaged. 

The averaging of the ˆ
kH  values may be done recursively to 

avoid having to store many matrices. Of course, the interest is 
not in the Hessian per se; rather the interest is in the (negative) 
mean of the Hessian, according to (2.3) (so the averaging 

must reflect many different values of Zpseudo(i)). 
 Let us now present a step-by-step summary of the above 

Monte Carlo resampling approach for estimating Fn(θ). 
Figure 1 is a schematic of the steps. 

Monte Carlo Resampling Method for Estimating Fn(θ) 

Step 0 (Initialization)  Determine θ, the sample size n, and 
the number of pseudodata vectors that will be 
generated (N). Determine whether log-likelihood 

log l(⋅) or gradient information g(⋅) will be used to 

form the ˆ
kH  estimates. Pick the small number c in 

the Bernoulli ± c distribution used to generate the 

perturbations ∆ki ; c = 0.0001 has been effective in the 



author’s experience (non-Bernoulli distributions may 
also be used subject to the conditions mentioned 
below (3.1)). Set i = 1. 

Step 1 (Generating pseudodata)  Based on θ given in step 
0, generate by Monte Carlo the ith pseudodata vector 

of n pseudo-measurements Zpseudo(i).  

Step 2 (Hessian estimation)  With the ith pseudodata vector 
in step 1, compute M ≥ 1 Hessian estimates according 
to the formula (3.1). Let the sample mean of these M 

estimates be ( )iH  = ( )
pseudo ( )( | )i iθH Z . (As 

discussed in Section 4, M = 1 has certain optimality 
properties, but M > 1 is preferred if the pseudodata 
vectors are expensive to generate relative to the 

Hessian estimates forming the sample mean ( )iH .) 

Step 3 (Averaging Hessian estimates)  Repeat steps 1 and 2 
until N pseudodata vectors have been processed. Take 
the negative of the average of the N Hessian estimates 

( )iH  produced in step 2; this is the estimate of Fn(θ). 
(In both steps 2 and 3, it is usually convenient to form 
the required averages using the standard recursive 
representation of a sample mean in contrast to storing 
the matrices and averaging later.) To avoid the 
possibility of having a nonpositive semidefinite 
estimate, it may be desirable to take the symmetric 
square root of the square of the estimate (the sqrtm 

function in MATLAB is useful here). Let , ( )M N θF  

represent the estimate of Fn(θ) based on M Hessian 
estimates in step 2 and N pseudodata vectors.  

 

Figure 1  Schematic of method for forming 
estimate , ( )M N θF . 

4. THEORETICAL BASIS FOR IMPLEMENTATION 

 There are several theoretical issues arising in the steps 
above. One is the question of whether to implement the 
Hessian estimate-based method from (3.1) rather than a 

straightforward averaging based on (2.2). Another is the 
question of how much averaging to do in step 2 of the 
procedure in Section 3 (i.e., the choice of M). We discuss 
these two questions, respectively, in Subsections 4.1 and 4.2. 
To streamline the notation associated with individual 
components of the information matrix, we generally write 

F(θ) for Fn(θ).  

4.1 Lower Variability for Estimate Based on (3.1) 

 The defining expression for the information matrix in 
terms of the outer product of gradients (eqn. (2.2)) provides 
an alternative means of creating a Monte Carlo-based 
estimate. In particular, at the θ of interest, one can simply 

average values of g(θ | Zpseudo(i))g(θ | Zpseudo(i))T
 for a large 

number of Zpseudo(i). Let us discuss why the Hessian-based 
method based on the alternative definition (2.3) is generally 

preferred. First, in the case where only log l (⋅) values are 

available (i.e., no gradients g(⋅)), it is unclear how to create an 
unbiased (or nearly so) estimate of the integrand in (2.2). In 

particular, using the log l (⋅) values to create a near-unbiased 

estimate of g(⋅) does not generally provide a means of creating 

an unbiased estimate of the integrand g(⋅)g(⋅)T
 (i.e., if X is an 

unbiased estimate of some quantity, X 

2
 is not generally an 

unbiased estimate of the square of the quantity). 
 The full version of this paper considers the more subtle 
case where g(⋅) values are directly available. The fundamental 
advantage of (3.1) arises because the variances of the 
elements in the information matrix estimate depend on second 
moments of the relevant quantities in the Monte Carlo 

average, while with averages of g(⋅)g(⋅)T
 the variances depend 

on fourth moments of the same quantities. This leads to 
greater variability for a given number (N) of pseudodata.  

4.2 Optimal Choice of M 

It is mentioned in step 2 of the procedure in Section 3 that it 
may be desirable to average several Hessian estimates at each 

pseudodata vector Zpseudo. We now show that this averaging 
is only recommended if the cost of generating the pseudodata 
vectors is high. That is, if the computational “budget” allows 
for B Hessian estimates (irrespective of whether the estimates 
rely on new or reused pseudodata), the accuracy of the Fisher 
information matrix is maximized when each of the B estimates 
rely on a new pseudodata vector. On the other hand, if the cost 

of generating each pseudodata vector Zpseudo is relatively 
high, there may be advantages to averaging the Hessian 

estimates at each Zpseudo (see step 2). This must be considered 
on a case-by-case basis.  
 Note that B = MN represents the total number of Hessian 
estimates being produced (using (3.1)) to form , ( )M N θF . The 

two results below relate , ( )M N θF  to the true matrix F(θ). 



These results apply in both of the cases where G(θ | Zpseudo) in 
(3.1) represents a gradient approximation (based on 

log l (θ | Zpseudo) values) and where G(θ | Zpseudo) represents 

the exact gradient g(θ | Zpseudo).     

Proposition 1. Suppose that g(θ | Zpseudo) is three times 

continuously differentiable in θ for almost all Zpseudo. Then, 

based on the structure and assumptions of (3.1), [ ], ( )M NE θF  

= F(θ) + O(c
2
). 

Proof. Spall (2000) shows that pseudo
ˆ( | )kE H Z  = 

pseudo( | )θH Z  + 2( )O cZ  under the stated conditions on g(⋅) 

and ∆k. Because , ( )M N θF  is simply a sample mean of ˆ
kH  

values, the result to be proved follows immediately. Q.E.D. 

Proposition 2.   Suppose that the elements of { (1) (1)
1 ,..., ;M∆ ∆  

(2) (2)
1 ,..., ;....;M∆ ∆  

( ) ( )
1 ,..., ;N N

M∆ ∆  }pseudo pseudo(1),..., ( )NZ Z  are 

mutually independent. For a fixed B = MN, the variance of 
each element in , ( )M N θF  is minimized when M = 1.  

Proof. From step 2 in Section 3, ( )iH  = 1

1
ˆM

kk
M −

=∑ H , 

where ˆ
kH  = pseudo

ˆ ( )( )k iH Z  for all k. The hjth
 
component of 

ˆ
kH  can be represented in generic form as 

( )
pseudo, ( )( )i

hj kf i∆ Z , where ( )i
k∆  represents the p-dimensional 

perturbation vector used to form ˆ
kH . Note that   

 ( )
, pseudo

1 1 1

1 1 ˆ( ) ( )( )
N N M

i
M N k

i i k

i
N MN

= = =

= =∑ ∑∑θF H H Z . (4.5) 

Let [ ], ( )M N hj
θF  denote the hjth element of , ( )M N θF . 

Because the elements of { (1) (1)
1 ,..., ;M∆ ∆  

(2) (2)
1 ,..., ;....;M∆ ∆  

( ) ( )
1 ,..., ;N N

M∆ ∆  }pseudo pseudo(1),..., ( )NZ Z  are mutually 

independent, (4.5) implies that the variance of the hjth 
element is given by, 

[ ]{ } ( )
, pseudo2 2

1 1

( ) ( )
pseudo pseudo2 2

1 1 ,

1
var ( ) var , ( )

2
cov , ( ) , ( )

( )

( ), ( )

[ ]

[ ]

N M
i

M N hj khj
i k

N M
i i

hj hj mk
i m k m

f i
M N

f i f i
M N

= =

= = <

=

+

∑∑

∑∑∑

F Z

Z Z

θ ∆

∆ ∆

  (4.6) 

Because the ( )i
k∆  are identically distributed and the Zpseudo(i) 

are identically distributed, the summands in the first double 

sum of (4.6) are identical and the summands in the second 
double sum are identical. Further,   

  (4.7) 

where hjf  ≡ ( )
pseudo, ( )( )i

hj kE f i  ∆ Z . Because E(X 
2
) ≥ 

[E(X)]
2
 for any real-valued random variable X,  and because 

hjf  = { }( )
pseudo pseudo, ( ) ( )( )i

hj kE E f i i  ∆ Z Z , the right-hand 

side of (4.7) is non-negative. Hence, because MN is a constant 
(= B), the variance of [ ], ( )M N hj

θF , as given in (4.6), is 

minimized when the second double sum on the right-hand side 
of (4.6) is zero. This happens when M = 1. Q.E.D. 

5. IMPLEMENTATION WITH ANTITHETIC 
  RANDOM NUMBERS 

 Antithetic random numbers (ARNs) may sometimes be 
used in simulation to reduce the variance of sums of random 
variables. ARNs represent Monte Carlo-generated random 
numbers such that various pairs of random numbers are 
negatively correlated. The full version of the paper discusses 
the use of ARNs. 

6. NUMERICAL EXAMPLE 

 Suppose that the data zi are independently distributed 

N(µ, Σ + Pi) for all i, where µ and Σ are to be estimated and 

the Pi are known. This corresponds to a signal-plus-noise 
setting where the N(µ, Σ)-distributed signal is observed in the 

presence of independent N(0, Pi)-distributed noise. The 
varying covariance matrix for the noise may reflect different 
quality measurements of the signal. Among other areas, this 
setting arises in estimating the initial mean vector and 
covariance matrix in a state-space model from a cross-section 
of realizations (Shumway, et al., 1981), in estimating 
parameters for random-coefficient linear models (Sun, 1982), 
or in small area estimation in survey sampling (Ghosh and 
Rao, 1994).  

 Let us consider the following scenario: dim(zi) = 4, n = 

30, and Pi = Ti U U , where U is generated according to a 

4 × 4 matrix of uniform (0, 1) random variables (so the Pi are 

identical except for the scale factor i ). Let θ represent the 
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unique elements in µ and Σ; hence, p = 4 + 4(4 1) 2+   = 14. 

So, there are 14(14 1) 2+  = 105 unique terms in Fn(θ) that are 

to be estimated via the Monte Carlo scheme in Section 3. This 
is a problem where the analytical form of the information 
matrix is available (see Shumway, et al., 1981). Hence, the 
Monte Carlo resampling-based results can be compared with 
the analytical results. The value of θ used to generate the data 

is also used here as the value of interest in evaluating Fn(θ). 
This value corresponds to µ = 0 and Σ being a matrix with 1’s 
on the diagonal and 0.5’s on the off-diagonals. 
 This study illustrates two aspects of the resampling 
method. Table 1 presents results related to the optimality of M 
= 1 when independent perturbations are used in the Hessian 
estimates (Subsection 4.2). This study is carried out using 
only log-likelihood values to construct the Hessian estimates 
(via using the simultaneous perturbation gradient estimate in 
(3.2)). The table also presents results related to the value of 
gradient information (when available) relative to using only 
log-likelihood values. All studies here are carried out in 
MATLAB (version 6) using the default random number 
generators (rand and randn). Note that there are many 
ways of comparing matrices; we use two convenient methods 
below. One is based on the maximum eigenvalue; the other is 
based on the norm of the difference. For the maximum 
eigenvalue, the two candidate estimates of the information 
matrix are compared based on the sample means of the 

quantity max max maxλ̂ − λ λ , where maxλ̂  and maxλ  denote 

the maximum eigenvalues of the estimated and true 
information matrices, respectively. For the norm, the two 
matrices are compared based on the sample means of the 
standardized spectral norm of the deviations from the true 
(known) information matrix , ( ) ( ) ( )M N n n−θ θ θF F F  (the 

spectral norm of a square matrix A is A  = 
1/2largest eigenvalue of[ ]TA A ; this appears to be the most 

commonly used form of matrix norm because of its 
compatibility with the standard Euclidean vector norm).  
 Table 1 shows that there is statistical evidence consistent 
with Proposition 2. Namely in the comparisons of 1,40000F  

with 20,2000F  (column (a) versus (b)), the P-value (probability 

value) computed from a standard matched-pairs t-test, is 0.002 
and 0.0009 for the maximum eigenvalue and norm 
comparison. These P-values are based on 50 independent 
experiments. Hence, there is strong evidence to reject the null 
hypothesis that 1,40000F  and 20,2000F  are equally good in 

approximating Fn(θ); the evidence is in favor of 1,40000F  

being a better approximation. (Note that computer run times 
for 1,40000F  are about 15 percent greater than for 20,2000F , 

reflecting the additional cost of generating the greater number 
of pseudodata. This supports the comment in Section 4 that a 
small amount of averaging [M > 1] may be desirable in 
practice even though M = 1 is the optimal solution under the 
constraint of a fixed B = MN. Unfortunately, due to the 
problem-specific nature of the extra cost associated with 
generating pseudodata, it is not possible in general to 
determine a priori the optimal amount of averaging under the 
constraint of equalized run times.)  At M = 1 and N = 40,000, 
columns (a) and (c) of Table 1 also illustrate the value of 
gradient information, with both P-values being very small, 
indicating strong rejection of the null hypothesis of equality in 
the accuracy of the approximations. It is seen from the values 
in the table that the sample mean estimation error ranges from 
0.5 to 1.5 percent for the maximum eigenvalue and 1.8 to 5.3 
percent for the norm. 

7. CONCLUDING REMARKS  

The Fisher information matrix is widely used in the design 
and evaluation of systems. Important applications include 
uncertainty calculation (confidence intervals and prediction 
bounds), experimental design, and the determination of prior 
distributions for Bayesian analysis. However, in many 
realistic processes, analytical evaluation of the information 
matrix is difficult or impossible.  
 This paper has presented a relatively simple Monte Carlo 
means of obtaining the Fisher information matrix for use in 
complex estimation settings. In contrast to the conventional 
approach, there is no need to analytically compute the 
expected value of Hessian matrices or outer products of loss 
function gradients. The Monte Carlo approach can work with 

Table 1  Numerical assessment of Proposition 2 (column (a) vs. column (b)) and of value of gradient 
information (column (a) vs. column (c)). Comparisons via mean absolute deviations from maximum 
eigenvalues and mean spectral norm of difference as a fraction of true values (columns (a), (b), and (c)). 
Budget of SP Hessian estimates is constant (B = MN). P-values based on two-sided t-test. 

 M = 1 
N = 40,000 

Likelihood values 
(a) 

M = 20 
N = 2000 

Likelihood values
(b) 

M = 1 
N = 40,000 

Gradient values 
(c) 

P-value 
(Prop. 2) 
(a) vs. (b) 

P-value 
(gradient info.) 

(a) vs. (c) 

Maximum 
eigenvalue 

0.0103 0.0150 0.0051 0.002 0.0002 

Norm 0.0502 0.0532 0.0183 0.0009 < 1010−  



either evaluations of the log-likelihood function or the 
gradient, depending on what information is available. The 
required expected value in the definition of the information 
matrix is estimated via a Monte Carlo averaging combined 
with a simulation-based generation of “artificial” data. The 
averaging and generation of artificial data are similar to 
resampling in standard bootstrap methods in statistics. We 
also presented some theory that is useful in reducing the 
variability of the estimate through optimal forms of the 
required averaging and through the use of antithetic random 
numbers.  
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